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Abstract 

This paper considers an alternative estimation procedure of finite population mean on current 

occasion in two-occasion successive sampling. An exponential type estimator of current 

population mean has been proposed and its behavior is examined. Optimum replacement strategy 

for the proposed estimation procedure has been suggested. Empirical study is carried out to 

justify the proposition of the estimator and suitable recommendations have been made. 
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1. Introduction 

There are many problems of practical interest in different fields of socio economic, 

agricultural and environmental sciences in which the various characters opt to change over time. 

For such situations, one time surveys are not sufficient, there is need of continuous monitoring. 

Surveys where sampling is done on successive occasions (over years or seasons or months) 

according to a specified rule, with partial replacement of units, is called successive (rotation) 

sampling. Successive (rotation) sampling provides a strong statistical tool for generating the 

reliable estimates at different occasions. A key issue, related to successive sampling, is the 
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extent to which elements are sampled at the previous occasion should be retained in the sample 

selected at the current occasion; this is termed as optimum replacement policy. 

The theory of rotation (successive) sampling appears to have started with the work of Jessen 

(1942). He pioneered using the entire information collected in the previous investigations 

(occasion). The theory of rotation (successive) sampling is due to Patterson (1950), Patterson’s 

theory was examined and extended by Eckler (1955) Rao and Graham (1964), Chochran (1977), 

Gupta (1979), Das (1982), and Chaturvedi and Tripathi (1983), among others. Sen (1971) 

developed estimators for the population mean on the current occasion extracting the information 

from two auxiliary variables were available on previous occasion. Sen (1972, 1973) extended 

his work for several auxiliary variables. Singh and Singh (2001) used the auxiliary information 

on current occasion for estimating the current population mean in two occasions successive 

sampling. Singh (2003) extended their work for h-occasions successive sampling. 

In many situations, information on an auxiliary variable may be readily available on the first 

as well as the second occasion; for example, tonnage (or seat capacity) of each vehicle or ship is 

known in the survey sampling of transportation, number of beds in different hospitals may be 

known in hospital surveys, number of polluting industries and vehicles are known in 

environmental survey, nature of employment status, educational status, food availability and 

medical aid of locality are well known in advance for estimating the various demographic 

parameters in demography surveys. Many other situations in biological (life) sciences could be 

explored to show the benefits of the present study. Utilizing the auxiliary information on both 

the occasions, Feng and Zou (1997) and Biradar and Singh (2001), Singh (2005), Singh and 

Priyanka (2006, 2007, 2008), Singh and Karna (2009) and Singh and Parsad (2010), Upadhaya 

et. al (2011), Singh et. al (2011) and Gupta et. al (2012), used the auxiliary information on the 

both occasions for estimating the current mean in successive sampling. 

The objective of this paper is to propose some efficient and alternative type of estimators of 

population mean on current occasion in successive (rotation) sampling with two-occasion as 

follow up of the above work. Utilizing the information on two auxiliary variables which are 

positively and negatively correlated with study variable and readily available on both occasions 

besides the information on the study variable from the previous occasion, exponential type 

estimators have been proposed and their behavior are examined. A relative comparisons of 

efficiencies of the proposed estimators with sample mean estimator when there is no matching 
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from previous occasion, and the natural successive sampling estimator when no auxiliary 

information is used at any occasion are made through empirical studies. Results are interpreted 

and consequently suitable recommendations have been made.  

 
2. Sample structure and notations  

Let ( )1 2 NU= U ,U , ..., U  be the finite population of N units, which has been sampled over 

two occasions. The character under study is denoted by x(y) on the first (second) occasion, 

respectively. It is assumed that the information on two stable auxiliary variables 1z and 1z   with 

known population means, which have positive and negative correlations respectively with the 

study variable x(y) on the first (second) occasion are available. A simple random sample 

(without replacement) of size n is drawn on the first occasion. A random subsample of size 

m=nλ  is retained (matched) for its use on the second occasion, while a fresh simple random 

sample (without replacement) of size ( )u = n - m = nµ  is drawn on the second occasion from the 

entire population so that the sample size on the second occasion is also n. Here λ  and 

( )µ µ λ=1+  are the fractions of the matched and fresh samples, respectively, at the current 

(second) occasion. The values of λ or µ  are required to be chosen optimally. In what follows we 

shall use the following notations:  

 

Y,X : Population means of the study variables x and y respectively. 

 1 2Z ,Z : Population means of the auxiliary variables 1z and 2z respectively. 

( )u m m n ju jm jny , y , x ,x , z , z , z j=1,2 : The sample means of the respective variables based on the 

sample sizes shown in suffices. 

1 2 1 1yx yz yz xz xzρ , ρ , ρ , ρ , ρ : Population correlation coefficients between the variables as shown in 

subscripts. 

x y zC , C , C : Coefficients of variation of the variable given in the subscripts. 

 
1 2

2 2 2 2
x y z zS , S , S , S : Population variances of the variables x, y, 1z and 2z  respectively. 

 
To estimate the population mean Y on second (current) occasion, two different estimators 

may be formulated. One estimator is based on the fresh sample of size u drawn on the current 
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occasion and the other estimator is based on matched sample of size m common to both 

occasions. Formulation of estimators is described in the following sections.  

 

3. Estimation procedure of population mean in presence of positively correlated 

auxiliary variable 

To estimate the population mean Y  based on the fresh sample of size u drawn on the second 

occasion and in presence of positively correlated variable 1z , an exponential type estimator is 

considered as 

 

1 1u
u u

1 1u

Z - z
T = y exp

Z + z
! "
# $
% &

! ! ! ! ! ! ! ! ! !!!!!!!!(1) 

 

Another estimator of population mean Y based on the sample size m common to both the 

occasions is again an exponential type estimator and is structured as  

 

n m 1 1m
m m

n m 1 1m

x -x Z - z
T = y exp exp

x +x Z + z
! " ! "
# $ # $
% & % &

! ! ! ! ! ! ! !!!!!!!!(2) 

 

 The final estimator of population mean Y  is formulated as  

 

 ( )u mT = φT + 1-φ T                          (3) 

 

where ( )φ 0 φ 1≤ ≤ is an unknown constant to be determined so as to minimize the mean square 

error of the estimator T. 

 

Remark 3.1: For estimating the mean on each occasion the estimator uT  is suitable, which 

implies that more belief on uT  could be shown by choosing φ as 1(or close to 1), while for 

estimating the change from one occasion to the next, the estimator mT could be more useful so 



!
!

5!

φmight be chosen as 0 (or close to 0). For asserting both the problems simultaneously, the 

suitable (optimum) choice of φ is required. 

 

4. Bias and mean square error of proposed estimator T 

Since, the estimators uT and mT are the exponential and exponential type estimators, 

respectively, they are biased estimators ofY , therefore, the resulting estimator T defined in 

equation (3) is also biased forY . The bias B (.) and mean square error M (.) up to the first order 

of approximation of the estimator T is derived using the following transformations: 

 

( )u 1y =Y 1+ e , ( )m 2y =Y 1+ e , ( )m 3x =X 1+e , ( )n 4x =X 1+e , ( )1u 1 5z =Z 1+e , ( )1m 1 6z =Z 1+e , 

( )1n 1 7z =Z 1+e  such that ( )i iE e = 0 and e 1, i =1, 2,...,7.≤ ∀  

Under the above transformations uT and mT  take the following forms: 

 

( )
1

5 5
u 1

-e e
T = Y 1+ e exp 1+

2 2

−" #$ %
& '( )

* +& ', -
!! ! ! ! ! ! !!!!!!!!! !!!!!!!!(4)!

 

( ) ( ) ( )
1 1

4 3 4 3 6 6
m 6

e e e e -e e
T = Y 1+ e exp 1 exp 1+

2 2 2 2

− −" # " #− −$ % $ %& '+ & '( ) ( )
* +& ' & '* + , -, -

! ! ! !!!!!!!!(5) 

 

The bias B (.) and mean square error M (.) up to the first order of approximation of the 

estimator T is derived and presented in the following theorems: 

 

Theorem 4.1: Bias of the estimator T to the first order approximation is obtained as 

 

( ) ( ) ( ) ( )u mB T =φB T + 1- φ B T                                                            (6) 

where 

( )
1

2
u yz y

1 1 3 1B T =Y - - ρ C
u N 8 2

! "# $# $
% &% &' (
) *) *+ ,

! ! ! ! ! ! ! !!!!!!!!(7)!
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( )
1 1 1

2
m yz yx yz yx yz y

1 3 1 1 1 3 1 1 1 3
B T =Y ρ - ρ + ρ - ρ - - ρ C

m 4 4 2 n 8 4 2 N 8
! "# $ # $ # $− −& ' & ' & '( )

* + * + * +, -
                       (8)!

 

Proof: The bias of the estimator T is given by 

 

( ) ( )u mB T =E T-Y =φE T -Y + 1-φ E T -Y! " ! " ! "# $ # $ # $ ! ! ! ! ! ! !!!!!!!!(9) 

              ( ) ( ) ( )u m= φB T + 1-φ B T              (10)     

where ( ) ( )u u m mB T  = E T -Y and B T = E T -Y .! " ! "# $ # $  

 

Substituting the expressions of uT and mT  from equations (4) and (5) into equation (10), 

expending binomially, taking expectations, and retaining the terms up to the first order 

approximations, we have the expression of the bias of the estimator T as shown in equation (6) 

 

Theorem 4.2: Mean square error of the estimator T to the first order approximations is obtained 

as 
2 2

u m u mM(T)=φ M(T )+ (1- φ) M(T )+ 2φ(1- φ)C(T ,T )             (11) 

where 

( )
1

2
u yz y

1 1 5M T = - - ρ S
u N 4

! "# $# $
% &% &' (
) *) *+ ,

! ! ! ! ! ! ! ! !!!!!!(12)!

 

( )
1 1 1

2
m yz yx yz yx yz y

1 3 1 1 1 1 1 5
M T = - ρ ρ ρ - ρ - - ρ S

m 2 2 n 4 2 N 4
! "# $ # $ # $− − +& ' & ' & '( )

* + * + * +, -
! ! ! !!!!!!(13)!

 

( )
1

2
u m yz y

1 5C T ,T = - - ρ S
N 4

! "# $
% &' (
) *+ ,

! ! ! ! ! ! ! ! !!!!!!(14) 

 

Proof: The mean square error of the estimator T is given by 

( ) ( ) ( )( )
22

u mM T =E T-Y =E φ T -Y + 1- φ T -Y! "! "# $ # $  
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                ( ) ( ) ( ) ( ) ( )2 2
u m u m=φ M T + 1-φ M T +2φ 1-φ C T ,T                                                          (15) 

where ( ) ( ) ( ) ( )( )2 2

u u m m u m u mM T = E T -Y , M T = E T -Y and C T ,T = E T -Y T -Y .! "! " ! "# $ # $ # $ !

!

Substituting the expressions of uT and mT  from equations (4) and (5) into equation (15), 

expanding binomially, taking expectations, and retaining the terms up to the first order 

approximations, we have the expression of the mean square error of the estimator T as shown in 

equation (11) 

 

Remark 4.1: Since, x and y are same study variable over two occasions and 1z  is an auxiliary 

variable positively correlated to x and y, therefore, ensuring on the stability nature (Reddy 1978) 

of the coefficient of variation and following Cochran (1977) and Feng and Zou (1997), the 

coefficients of variation of x, y, and 1z  are considered to be approximately equal. 

 

5. Minimum mean square error of the estimator T  
Since the mean square error of the estimator T in equation (11) is a function of unknown 

constant φ , therefore, it is minimized with respect to φ  and subsequently the optimum value of 

φ , say optφ is obtained as 

 

m u m
opt

u m u m

M(T ) - C(T ,T )φ =
M(T )+M(T )-2C(T ,T )

!! ! ! ! ! ! ! !!!!!!(16)!

 

Now substituting the value of optφ  from equation (16) into equation (11), we get the optimum 

mean square error of the estimator T as 

 
2

u m u m
opt

u m u m

M(T ).M(T )-[C(T ,T )]
M(T) =

M(T )+M(T )-2C(T ,T )
! ! ! ! ! ! ! !!!!!!(17)!
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Further, substituting the values of u mM(T ), M(T )  and u mC(T ,T )  from equations (12)-(14) in 

equations (16) and (17), we get the simplified values of optφ  and optM(T) , which are shown 

below: 

( )
opt

1 2
2

1 2

µ A + A µ
φ =

A + A µ
! "
# $
% &

! ! ! ! ! ! ! ! ! !!!!!!(18)!

and 

( )
22
y3 4 5

2opt
1 2

SA + A µ- A µ
M T =

A + A µ n
! "
# $
% &

!!!!!!! ! ! ! ! ! ! !!!!!!(19)!

!

where ( )
1 1

2
1 yz 2 yz yx 3 1 4 1 2 5 4
5 1 1

A = -ρ , A = ρ - ρ , A = 1-f A , A = A A , A = fA ,
4 4 2

+
nf =  and
N

uµ =
n

is  

the fractions of fresh sample drawn at the current (second) occasion. 

 

6. Optimum replacement policy for estimator T 

The optimum mean square error optM(T)  in equation (19) is a function of µ (fraction of 

sample to be drawn afresh at the second occasion). It is an important factor in reducing the cost 

of the survey, therefore, to determine the optimum value of µ so that Y  may be estimated with 

maximum precision and minimum cost, we minimize optM(T)  with respect to µ which results in 

a quadratic equation in µ,  which is shown as 

 
2

1 2 3µ D -2µD + D = 0                                                                                                               (20)   

 

where, 1 2 4 D = A A , ( )2 1 5 2 3D = A A + A A and 3 1 4D =A A . 

 

solving the equation (20), the solutions of  µ  (say µ̂ ) are obtained as             

 
2

2 2 1 3

1

-D ± D - D D
µ̂ =

D
                                                                                                           (21) 
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From equation (21) it is clear that the real values of µ̂ exist, iff, the quantities under square 

root is greater than or equal to zero. For any combinations of correlations, which satisfy the 

condition of real solutions, two real values of µ̂ are possible. Hence, while choosing the values 

of µ̂ , it should be remembered that ˆ0 µ 1≤ ≤ , and all other values of µ̂  are said to be 

inadmissible. If both the values of µ̂  are admissible, the lowest one is the best choice as it 

reduces the cost of the survey. From equation (21), substituting the admissible value of µ̂  

(say 0µ ) in equation (19), we have the optimum value of mean square error of the estimator T, 

which is shown below: 

 

( )
22
y3 4 0 5 0

0 2opt
1 2 0

SA + A µ - A µ
M T =

A A µ n
! "
# $+% &

! ! ! ! ! ! ! !!!!!!(22)!

 

7. Estimation procedure of population mean in presence of negatively correlated 

auxiliary variable 

In section 3, we have proposed the estimator T of population mean Y  at current occasion 

under the assumption that the auxiliary variable 1z  is positively correlated with x(y) at first 

(second) occasion. Sometimes, one may desire to develop the estimator of Y  at current occasion 

when the auxiliary variable is negatively correlated with x(y) at the first (second) occasion. 

Motivated with this argument we propose the estimator *T  which is suitable for the negatively 

correlation situation. Proceeding as discussed in the section 3, the estimators of population mean 

Y  based on the fresh and matched samples respectively for the negatively correlated auxiliary 

variable 2z  are defined as: 

 

* 2u 2
u u

2u 2

z -Z
T = y exp

z +Z
! "
# $
% &

!!!!!!! ! ! ! ! ! ! ! ! !!!!!!(23) 

* n m 2m 2
m m

n m 2m 2

x -x z -Z
T = y exp exp

x +x z +Z
! " ! "
# $ # $
% & % &

!!!!!!! ! ! ! ! ! ! !!!!!!(24) 
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Finally, considering the convex linear combination of the estimators *
uT  and *

mT , we have the 

final estimator *T  of Y  as 

( )* * *
u mT  = ψT + 1-ψ T                   (25) 

where ( )ψ 0 ψ 1≤ ≤  is an unknown constant to be determined so as to minimize the mean square 

error of the estimator *T .   

 

8. Bias and Mean Square Error of the Estimator *T  
Following the properties of the estimator T as discussed in section 4, similarly the bias and 

mean square error of the estimator *T  are derived as 

 

( ) ( ) ( ) ( )* * *
u mB T  = ψB T + 1-ψ B T                   (26) 

where 

( )
2

* 2
u yz y

1 1 1 1B T =Y - + ρ C
u N 8 2

! "# $# $−& '& '( )
* +* +, -

                (27) 

and 

( )
2 2 2

* 2
m yz yx yz yx yz y

1 1 1 1 1 3 1 1 1 1
B T =Y ρ - ρ - ρ - ρ - - ρ C

m 4 4 2 n 8 4 2 N 8
! "# $ # $ # $+ − −& ' & ' & '( )

* + * + * +, -
             (28)!

!

* 2 * 2 * * *
u m u mM(T )=ψ M(T ) + (1- ψ) M(T ) + 2ψ(1- ψ)C(T ,T )             (29) 

where 

( )
2

* 2
u yz y

1 1 5M T = - + ρ S
u N 4

! "# $# $
% &% &' (
) *) *+ ,

!! ! ! ! ! ! ! !!!!!!(30)!

 

( )
2 2 2

* 2
m yz yx yz yx yz y

1 3 3 1 1 1 1 5
M T = + ρ ρ ρ - ρ - + ρ S

m 2 2 n 4 2 N 4
! "# $ # $ # $− − −& ' & ' & '( )

* + * + * +, -
! ! ! !!!!!!(31)!
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( )
2

* * 2
u m yz y

1 5C T ,T = - - ρ S
N 4

! "# $
% &' (
) *+ ,

! ! ! ! ! ! ! ! !!!!!!(32) 

 

9. Minimum mean square error and optimum replacement policy of the 

estimator *T  

Proceeding as discussed in sections (5), the optimum mean square error of estimator *T  is 

obtained as  

 

( )
opt

1 2
2

1 2

µ B + B µ
ψ =

B + B µ
! "
# $
% &

! ! ! ! ! ! ! ! ! !!!!!!(33)!

and 

( )
22
y* 3 4 5

2opt
1 2

SB + B µ - B µ
M T =

B + B µ n
! "
# $
% &

!!!!!!! ! ! ! ! ! ! !!!!!!(34)!

where ( )
2 2

2
1 yz 2 yz yx 3 1 4 1 2 5 4
5 1 1

B = +ρ , B = ρ - ρ , B = 1-f B , B = B B , and B = fB .
4 4 2

−
 

!

Following the discussion given in section (6), the solution of µ  say µ̂  is obtained as 

 
2

2 2 1 3

1

-Q ± Q - Q Q
µ̂ =

Q
!!!!!!! ! ! ! ! ! ! ! ! !!!!!!(35) 

where, 1 2 4 Q = B B , ( )2 1 5 2 3Q = B B + B B and 3 1 4Q =B B . !

 

Let the admissible value of µ̂  be *
0µ  and subsequently the optimum mean error of the estimator 

T is given as 

( )
2* *2
y* 3 4 0 5 0

0 *2opt
1 2 0

SB + B µ - B µ
M T =

B B µ n
! "
# $+% &

! ! ! ! ! ! ! !!!!!!(36)!
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10. Efficiency Comparison 

The percent relative efficiencies of the estimator T and *T  with respect to (i) sample mean 

estimator ny  , when there is no matching and (ii) natural successive sampling estimator 

'
u mŶ=δy +(1- δ)y  when no auxiliary information is used at any occasion, where  

( )'
m m yx n my = y +b x - x ,have been computed for different choices of correlations 

1 2 1yx yz yz xzρ , ρ , ρ , ρ  and 
2xz

ρ are presented in Tables 1-2. Since, ny  and Ŷ  are unbiased 

estimators of Y , therefore, following Sukhatme et.al.(1984) the variance of ny  and optimum 

variance of Ŷ  are given by  

2
n y

1 1V(y )= - S
n N
! "
# $
% &

                (37) 

2 2
y y2

opt yx

S SˆV(Y) = 1+ 1-ρ -
2n N

! "
# $

                          (38) 

 

For N=5000, n=500 and different choices of correlations, Tables-1-2 present the optimum 

values of 0µ  and *
0µ , and percent relative efficiencies *

1 2 1E , E , E  and *
2E  of the estimator T and 

*T  with respect to ny  and Ŷ  respectively, where 

 

n
1

0 opt

V(y )
E = X 100

M(T )
!, opt

2
0 opt

ˆV(Y)
E = X100

M(T )
, * n

1 *
0 opt

V(y )
E = X 100

M(T )
!!and   opt*

2 *
0 opt

ˆV(Y)
E = X100

M(T )  
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Table 1: Optimum values of 0µ  and percent relative efficiencies of the estimator T with 

respect to ny  and Ŷ . 

 

yxρ ↓  
1yz

ρ →  0.4 0.5 0.6 0.7 0.8 0.9 

 

0.3 
0µ  

1E  

2E  

0.4797 

112.36 

109.49 

0.4705 

124.65 

121.46 

0.4594 

140.10 

136.51 

0.4458 

160.18 

156.08 

0.4286 

187.50 

182.70 

0.4059 

227.17 

221.36 

 

0.4 
0µ  

1E  

2E  

0.4929 

115.78 

110.41 

0.4844 

128.72 

122.74 

0.4741 

145.03 

138.30 

0.4613 

166.32 

158.60 

0.4450 

195.39 

186.31 

0.4232 

237.79 

226.76 

 

0.5 
0µ  

1E  

2E  

0.5076 

119.63 

110.73 

* 

- 

- 

0.4907 

150.67 

139.47 

0.4791 

173.42 

160.52 

0.4641 

204.64 

189.40 

0.4437 

250.44 

231.80 

 

0.6 
0µ  

1E  

2E  

0.5243 

124.02 

110.24 

0.5179 

138.65 

123.25 

0.5100 

157.27 

139.80 

0.9091 

181.82 

161.62 

0.4868 

215.74 

191.77 

0.4686 

265.93 

236.39 

 

0.7 
0µ  

1E  

2E  

0.5434 

129.11 

108.61 

0.5387 

144.90 

121.89 

0.5327 

165.12 

138.90 

0.5251 

192.00 

161.51 

0.5147 

229.52 

193.07 

0.7143 

285.71 

240.34 

 

0.8 
0µ  

1E  

2E  

0.5659 

135.14 

105.11 

0.5635 

152.42 

118.55 

0.5604 

174.77 

135.94 

0.5563 

204.84 

159.32 

0.5505 

247.45 

192.46 

0.5420 

312.61 

243.14 

 

0.9 
0µ  

1E  

2E  

0.5931 

142.51 

- 

0.5941 

161.82 

111.11 

0.5955 

187.19 

128.53 

0.5973 

222.00 

152.43 

0.6000 

272.73 

187.26 

0.6044 

353.55 

242.75 

 

(*) indicate 0µ does not exist and (-) denote no gain. 
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Table 2: Optimum values of *
0µ , and percent relative efficiencies of the estimator *T with 

respect to ny  and Ŷ . 

 

yxρ ↓  
1yz

ρ →  -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 

 

0.3 

*
0µ  
*
1E  
*
2E  

0.4797 

112.36 

109.49 

0.4705 

124.65 

121.46 

0.4594 

140.10 

136.51 

0.4458 

160.18 

156.08 

0.4286 

187.50 

182.70 

0.4059 

227.17 

221.36 

 

0.4 

*
0µ  
*
1E  
*
2E  

0.4929 

115.78 

110.41 

0.4844 

128.72 

122.74 

0.4741 

145.03 

138.30 

0.4613 

166.32 

158.60 

0.4450 

195.39 

186.31 

0.4232 

237.79 

226.76 

 

0.5 

*
0µ  
*
1E  
*
2E  

0.5076 

119.63 

110.73 

* 

- 

- 

0.4907 

150.67 

139.47 

0.4791 

173.42 

160.52 

0.4641 

204.64 

189.40 

0.4437 

250.44 

231.80 

 

0.6 

*
0µ  
*
1E  
*
2E  

0.5243 

124.02 

110.24 

0.5179 

138.65 

123.25 

0.5100 

157.27 

139.80 

0.9091 

181.82 

161.62 

0.4868 

215.74 

191.77 

0.4686 

265.93 

236.39 

 

0.7 

*
0µ  
*
1E  
*
2E  

0.5434 

129.11 

108.61 

0.5387 

144.90 

121.89 

0.5327 

165.12 

138.90 

0.5251 

192.00 

161.51 

0.5147 

229.52 

193.07 

0.7143 

285.71 

240.34 

 

0.8 

*
0µ  
*
1E  
*
2E  

0.5659 

135.14 

105.11 

0.5635 

152.42 

118.55 

0.5604 

174.77 

135.94 

0.5563 

204.84 

159.32 

0.5505 

247.45 

192.46 

0.5420 

312.61 

243.14 

 

0.9 

*
0µ  
*
1E  
*
2E  

0.5931 

142.51 

- 

0.5941 

161.82 

111.11 

0.5955 

187.19 

128.53 

0.5973 

222.00 

152.43 

0.6000 

272.73 

187.26 

0.6044 

353.55 

242.75 

 

(*) indicate *
0µ  does not exist and (-) denote no gain. 
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11. Interpretation of Results 
(1) The following interpretations may be read out from Table 1: 

(a) For fixed value of 
1yz

ρ  the value of 1E and 0µ are increasing while 2E  is increasing for 

initial values of yxρ  and then decreasing for higher values of yxρ . This behavior is in 

agreement with Sukhatme et.al (1984) results, which explains that less the value of yxρ , 

more the fractions of fresh sample required at the current occasion. 

(b) For fixed value of yxρ , the values of 1E  and 2E  are increasing while values of 0µ  is 

decreasing with increasing values of 
1yz

ρ which is highly desirable pattern. This behavior 

indicates that if the information on auxiliary variable is available on both the occasions, 

their use at estimation stage reduces the cost of the survey as well as makes the estimates 

more precise. 

 

(2) From Table 2, it may be noticed that the values obtained in this table is exactly similar to 

that of Table-1. Hence, the interpretations of the results of Table-2 are similar to that of 

Table-1. 

 

12. Conclusions 
It is clear from the interpretations of above results, that the use of information on auxiliary 

variables at estimation stage is highly fruitful in terms of the proposed estimators T and *T . It 

may be seen from the Tables 1-2 that the proposed estimators are preferable and reliable over 

sample mean estimator and the natural successive sampling estimator in estimation of population 

mean at current occasion in two-occasion successive sampling. Moreover, the use of exponential 

type estimators in two-occasion successive sampling is perhaps in its beginning phase in sample 

survey. The proposed estimators are most suited in the estimation of (i) agriculture production 

(ii) pollution level (iii) industrial production etc. at different points of time. Therefore, the 

estimators T and *T may be recommended to survey statisticians for its practical applications. 

 

 

 



!
!

16!

Acknowledgements 
Authors are thankful to the referee for his valuable suggestions. Authors are also thankful to 

UGC, New Delhi and Indian School of Mines, Dhanbad for providing financial assistance and 

necessary infrastructure to complete the present research paper. 

 

    References 
1. Biradar, R. S. and Singh, H. P. (2001): Successive sampling using auxiliary information 

on  both occasions. Cal. Statist. Assoc. Bull. 51, 243-251. 

2. Chaturvedi, D. K. and Tripathi, T. P. (1983): Estimation of population ratio on two 

occasions  using multivariate auxiliary information. Jour. Ind. Statist. Assoc. 21, 113-120. 

3. Cochran, W. G. (1977): Sampling Techniques, Wiley Eastern Limited, New Delhi, III 

Edition. 

4. Das, A. K. (1982): Estimation of population ratio on two occasions, Jour. Ind. Soc. Agr. 

 Statist. 34, 1-9. 

5. ECKLER, A. R (1955). Rotation sampling. Annals of Mathematical Statistics, 26, 664-

685. 

6. Feng, S. and Zou, G. (1997): Sample rotation method with auxiliary variable. 

Communications in Statistics-Theory and Methods, 26, 6, 1497-1509. 

7. Gupta, P. C. (1979): Sampling on two successive occasions. Jour. Statist. Res. 13, 7-16. 

8. Gupta, S. , Shabbir, J. , Rita Sousa & Pedro Corte-Real. (2012). Estimation of the mean 

of a Sensitive Variable in the Presence of Auxiliary Information, Communications in 

Statistics- Theory  and methods, 41: 13-14, 2394-2404. 

9. Jessen, R.J. (1942): Statistical Investigation of a Sample Survey for obtaining farm facts, 

Iowa Agricultural Experiment Station Research Bulletin No. 304, Ames, Iowa,U. S. A., 1-

104. 

10. Patterson, H. D. (1950): Sampling on successive occasions with partial replacement of 

units, Journal of the Royal Statistical Society, 12, 241-255. 

11. Rao, J. N. K. and Graham, J. E. (1964): Rotation design for sampling on repeated 

occasions. Jour. Amer. Statist. Assoc. 59, 492-509. 

12. Sen, A. R. (1971): Successive sampling with two auxiliary variables, Sankhya, 33, Series 

B, 371-378. 



!
!

17!

13. Sen, A. R. (1972): Successive sampling with p �p ≥1 � auxiliary variables, Ann. Math. 

Statist., 43, 2031-2034. 

14. Sen, A. R. (1973): Theory and application of sampling on repeated occasions with several 

auxiliary variables, Biometrics 29, 381-385. 

15. Singh, V. K., Singh, G. N. and Shukla, D. (1991): An efficient family of ratio-cum-

difference type estimators in successive sampling over two occasions, J. Sci. Res. 41 

C,149-159. 

16. Singh, G. N. and Singh, V. K. (2001). On the use of auxiliary information in successive 

sampling. Journal of the Indian Society of Agricultural Statistics, 54(1), 1-12. 

17. Singh, G. N. (2003): Estimation of population mean using auxiliary information on recent 

occasion in h-occasion successive sampling, Statistics in Transition, 6, 523-532. 

18. Singh, G. N. (2005): On the use of chain type ratio estimator in successive sampling. 

Statistics in Transition, 7(1), 21-26. 

19. Singh, G. N., Majhi, D. and Prasad, S. (2011): On the use of chain-type estimator intwo-

phase successive sampling. Association for the Advancement of Modelling & 

Simulation Techniques in Enterprises,  D, Vol. 16, No. 2, pp. 1-10. 

20. Singh, G. N. and Karna, J. P. (2009): Estimation of population mean on current occasions 

in two-occasion successive sampling, Metron, 67(1), 69-85. 

21. Singh, G. N. and Prasad, S. (2010): Some estimator of population mean in two-

occasion rotation patterns, Association for the Advancement of Modelling & 

Simulation Techniques in Enterprises, 47(2), 1-18. 

22. Singh, G. N. and Prasad, S. (2013): Best linear unbiased estimators of population mean 

on current occasion in two-occasion successive sampling, Statistics in Transition-New 

Series, 14(1), 57-74. 

23. Singh, G. N. and Priyanka, K. (2006): On the use of chain-type ratio to difference 

estimator in successive sampling, International Journal of Applied Mathematics and 

Statistics, 5(S06), 41-49. 

24. Singh, G. N. and Priyanka, K. (2007): On the use of auxiliary information in search of 

good !rotation patterns on successive occasions, Bulletin of Statistics and Economics, 

I(A07); 42-60. 



!
!

18!

25. Singh, G. N. and Priyanka, K. (2008): Search of good rotation patterns to improve the 

precision of the estimates at current occasion. Communication in Statistics – Theory and 

Methods, 37 (30), 337-348. 

26. Sukhatme, P. V. , Sukhatme, B. V. and Ashok, C. (1984). Sampling theory of surveys 

with applications, lowa State University Press, Lowa, 3rd revised Edition. 

27. Upadhayay, L. N., Singh, H. P., Chatterjee, S. & Yadav  R. (2011). Improved Ratio and 

Product Eponential Type Estimators, Journal of Statistical Theory and Practice, 5:2,285-

302. 


